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Abstract. We analyse the behaviour of correlated electrons described by Hubbard-like models
at intermediate coupling. We argue that with increasing interaction a pole in a generic two-
particle Green function is approached. The pole signals condensation of electron–hole pairs and
a metal–insulator transition at half-filling. The two-particle singularity calls for a sophisticated
renormalization of the interaction strength. A self-consistent diagrammatic technique with
renormalized two-particle Green functions is developed. The theory is based on a linked-
cluster expansion for the thermodynamic potential with electron–electron interaction as the
propagator. The simplest theory with full vertex renormalization, summing self-consistently
multiple scatterings from two electron–hole channels, is proposed. We obtain an approximation
with a generating functional in closed form enabling us to handle appropriately singularities
in two-particle Green functions. The approximation is shown to be asymptotically exact in an
external magnetic field close to the fully polarized ferromagnetic state at half-filling and zero
temperature.

1. Introduction

Tight-binding models of correlated electrons are expected to provide descriptions of the
thermodynamic and spectral properties of the underlying system in the weak-coupling
regime as well as in the strong-coupling regime. We have at our disposal relatively
reliable techniques for describing the two extreme limits of weak and strong couplings in the
archetypal Hubbard model. The weak-coupling regime is governed by a Hartree–Fock mean
field with dynamical fluctuations captured by Fermi-liquid theory. Extended systems at low
temperatures are Pauli paramagnets with smeared out local magnetic moments. For bipartite
lattices, antiferromagnetic long-range order sets in at half-filling and zero temperature at
arbitrarily small interaction. In the strong-coupling regime, the Hubbard model at half-
filling maps onto a Heisenberg antiferromagnet with pronounced local magnetic moments
and the Curie–Weiss law for the staggered magnetic susceptibility, at least at the mean-field
level. The spectral structure is dominated by separated lower and upper Hubbard bands and
the strongly correlated system seems to be insulating even in the paramagnetic phase.

In recent years, the importance of the region in which the effective Coulomb repulsion
is comparable with the kinetic energy, and hence is neither very weak nor very strong,
has significantly increased. Unfortunately there has been up to now no adequate method
for describing this transition region between the weak- and strong-coupling limits. At
intermediate coupling, dynamical fluctuations control the low-temperature physics of
interacting electrons, and neither weak-coupling nor atomic-like perturbation theories are
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adequate. In this non-perturbative regime a singularity in a generic two-particle function
is approached and we expect breakdown of the Fermi-liquid regime and a transition to an
ordered state or eventually to a Mott insulator in the Hubbard-like models [1].

New progress in the construction of dynamical mean-field theories via high spatial lattice
dimensions improved the chances of it being possibile to investigate the transition region
between weak and strong coupling [2]. Although the spatial fluctuations are reduced in
high dimensions, there is no restriction on the quantum dynamical fluctuations which are
important at intermediate coupling. In particular, the quantum Monte Carlo technique in
d = ∞ dimensions revealed a number of new features of the (disordered) Hubbard model
at finite temperatures and intermediate couplings. We have learned of new conclusively
demonstrated aspects of the magnetic phase diagram of the finite-temperature Hubbard
model [3–6]. However, the quantum Monte Carlo technique is restricted just to relatively
high temperatures. That is why an analytic method based on second-order perturbation
theory, called IPT, was used to study the transition from weak to strong coupling at zero
temperature [7]. IPT at half-filling reproduces well the finite-temperature Monte Carlo data
and contains the weak-coupling (up toU2) and atomic solutions as exact limits. Unlike
Hubbard-III-like theories, it reproduces the Fermi liquid at weak coupling. A metal–insulator
transition was found atUc ≈ 6/πν, whereν is the DOS at the Fermi level [8–10]. Although
IPT is an analytic theory, its solution can be reached only via iterations that depend on the
initial value of the self-energy. When we start with6(0)(z) = 0, the iterations converge for
weak interaction to a metallic solution. If we start with6(0)(z) = 6at (z) = U2/4z we end
up with an insulating solution for sufficiently strong interaction. The IPT scheme fails to
converge close to the metal–insulator critical point. Different reasoning had to be used to
support the existence and character of the zero-temperature metal–insulator transition [11].

Since quantitative description of the Mott–Hubbard metal–insulator transition at
intermediate coupling remains analytically inaccessible, attempts have been made to
investigate the metal–insulator transition in the Hubbard model exposed to an external
magnetic field [12–15]. Perturbation theory breaks down at intermediate and strong coupling
close to the instability of the fully polarized ferromagnet. Mean-field analysisà la BCS
theory of superconductivity [12] can be trusted only in three and more spatial dimensions and
deep in the strong-coupling limit with mean-field long-range order. The Hubbard model in
d = 1, 2 dimensions is in the strong-coupling regime over the whole range of the interaction
strength, but shows no mean-field long-range order.

The failure of the existing analytic–numerical methods to describe properly intermediate
coupling with the metal–insulator transition at half-filling lies in the inadequate treatment
of perturbation theory at two-particle criticality. While the one-particle functions are
renormalized, the coupling constant remains mostly unrenormalized. However, the
metal–insulator transition and the paramagnet–antiferromagnet transition appear due to
condensation of electron–hole pairs and generate a pole in a two-particle Green function.
Such a situation demands a theory with full renormalization of the relevant two-particle
Green functions.

The aim of this paper is to build up a systematic theory for a reliable description
of the two-particle critical behaviour at intermediate and strong coupling of Hubbard-like
models. We use a renormalized perturbation expansion based on parquet-type diagrams
with non-trivial renormalizations of two-particle functions. In particular, we demonstrate
the necessity for dynamical vertex renormalizations whenever we approach a critical point.
An approximation with a generating functional, where the one- and two-particle functions are
fully renormalized, is proposed for the description of the critical behaviour of condensation
of bound electron–hole pairs. It is a simplified version of the parquet algebra keeping only
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the potentially most singular contributions to the two-particle scattering functions diverging
at the critical point. It strongly renormalizes scatterings within electron–hole pairs and leaves
inter-pair correlations unrenormalized. We show that the approximation derived becomes
asymptotically exact at zero temperature and half-filling when a fully polarized solution in
an external magnetic field is approached. Standard perturbation theory breaks down in this
limit and a reliable description can be reached only with full vertex renormalization in the
relevant two-particle scattering processes.

The arrangement of the paper is as follows. A systematic self-consistent expansion for
intermediate and strong coupling with renormalized two-particle functions is expounded in
section 2. To demonstrate the systematics of the general expansion, generating functionals
for simple ring and ladder series as well as the FLEX approximation are rederived in
section 3. Section 4 points to the necessity for vertex renormalizations in theories near
critical points of the two-particle functions in order to comply with a Ward identity
binding charge renormalizations (vertices) to mass renormalizations (self-energy). A new
approximation with fully renormalized vertex functions having a generating functional in
closed form is derived in section 5. Application of the new approximation to the half-
filled Hubbard model at zero temperature close to the fully polarized ferromagnetic state is
presented in section 6. The last section, section 7, gives the conclusions.

2. A systematic expansion with renormalizations in two-particle Green functions

To study correlated electron systems at intermediate coupling quantitatively, we will
resort to the tight-binding Hubbard model. The intermediate coupling in the Hubbard
model can be characterized by criticality of a two-particle Green function. Weak-coupling
perturbation theory with bare interaction no longer reflects the relevant physics of creation
and annihilation of long-living electron–hole pairs. To succeed in the quantitative description
of this complex situation, it is necessary to reformulate perturbation theory in such a way
that the bare interaction be systematically replaced with fully renormalized two-particle
functions determined from multiple two-particle scattering processes. This means that we
have to use a perturbation theory at the level of two-particle Green functions.

To develop systematic approximations for one-particle Green functions we use
Dyson’s equation, enabling us to consider explicitly only one-particle irreducible diagrams
contributing to the self-energy. The situation is more complicated at the level of two-
particle functions. Although we can use a Bethe–Salpeter equation to extract two-particle
irreducible diagrams, we have three possible ways of doing it. We have three channels for
multiple two-particle scatterings defining three types of two-particle irreducibility. They are
the electron–hole (e–h), electron–electron (e–e) and interaction(U) channels schematically
drawn in figure 1. Different channels mean different rearrangements of the perturbation
expansion. The chosen irreducible diagrams are summed first and the remaining reducible
ones are summed via a Bethe–Salpeter equation at the end. If the perturbation series
converges, all rearrangements must lead to the same result.

When studying two-particle functions we need to know the one-particle self-energy.
Hence perturbation theory for two-particle functions cannot be developed without a
parallel expansion for the self-energy. To approximate the one- and two-particle functions
simultaneously, we use perturbation expansion with two-particle functions as a means for
developing controllable, comprehensive approximations for a generating thermodynamic
potential. All of the physical quantities will then be determined consistently from the
generating functional via functional derivatives.

As a first step we decide which is the relevant two-particle function for our purpose to
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Figure 1. The first few diagrams contributing
to the electron–hole, (a), electron–electron, (b),
and interaction, (c), channels of the two-particle
scattering function.

describe correlated electrons at intermediate and strong coupling. It should be a function
approaching a pole with increasing interaction. Such a function must be related to the
interaction (two-particle) part of the underlying Hamiltonian. The natural generalization of
the Hubbard interaction is the following two-particle function:

Cij(τ ) = 〈n̂i↑(τ )n̂j↓(0)〉 − 〈n̂i↑(τ )〉〈n̂j↓(0)〉 (1)

measuring correlations between spin-up and spin-down densities at different times and
different lattice sites. The brackets denote thermal averaging. The Fourier transform
C(q, iνm) of the above function is a two-particle function approaching a pole when the
Hubbard interaction increases. Note thatνm are bosonic Matsubara frequencies. Due to the
space and time translational invariance of the Hamiltonian, ImC(q, 0) = 0 and the real part
has a definite sign; that is,

C(q, 0) ∝ −UX↑↑(q)X↓↓(q) < 0

with Xσσ (q) = N−1
∑
k

f (ε(k)− µσ )− f (ε(k + q)− µσ )
ε(k)− ε(k + q) . (2)

This relation is exactly fulfilled at weak coupling and can qualitatively be broken (a change
of the sign) only if the functionC(q, iνm) goes through a pole. The pole would indicate
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breakdown of the Fermi liquid. In the weak-coupling, Fermi-liquid regime, we can write

C(q, 0) = T

4
[κ(q, 0)− χ(q, 0)] < 0 (3)

where κ(q, iνm) is the dynamical compressibility andχ(q, iνm) the dynamical magnetic
susceptibility. Equation (3) states that magnetic fluctuations are stronger than the charge
fluctuations in the models with the Hubbard repulsive interaction. Divergence in the function
C(q, 0) induces divergence in the magnetic susceptibility and hence is an indication of a
magnetic instability.

The functionC(q, iνm) will be approximated by a selection of classes of Feynman
diagrams. According to Baym and Kadanoff [16, 17] a thermodynamically consistent theory
must work with fully renormalized one-particle propagators. To construct consistent approx-
imation schemes we have to build up a generating functional8[U,G] from the function
C(q, iνm). To do that we apply a linked-cluster expansion recently proposed by the author
and J Schlipf [18]. Its salient feature is that the interaction line (non-relativistic photons) is
used for edges (diagram bonds or propagators) and loops of electron Green functions serve
as unperturbed vertices. An analogy between the classical free-energy functional of the Ising
modelW [J, h] and the quantum grand potential�[U,G(0)] is thereby made, i.e.J ←→ U

andh←→ G(0). We use this analogy to construct the generating functional8[U,G] from
the two-particle functionC(q, iνm).

We represent the grand potential of the Hubbard model in the homogeneous phase in
the following form:

1

N �[n;6,G] = −Un↑n↓ − 1

βN
∑
σn,k

eiωn0+{ln[iωn + µσ − ε(k)− Un−σ −6σ(k, iωn)]

+ Gσ(k, iωn)6σ (k, iωn)} +8[U,G] (4)

where nσ ,6σ (k, iωn),Gσ (k, iωn) are variational variables (functions). We introduce a
small perturbationU → U + δU(q, iνm). The functionC(q, iνm) is defined as a variational
derivative of the generating functional

C(U ; q, iνm) = δ8 [U,G]

δU(q, iνm)

∣∣∣∣
δU=0

. (5)

The linked-cluster theorem is used for the inverse transformation

8[U,G] = U

βN
∑
qm

∫ 1

0
dλ C(Uλ|q, iνm). (6)

The two-particle functionC(Uλ|q, iνm) is understood as a functional of the fully renorm-
alized electron propagatorG(k, iωn) with the self-energy determined at the interaction
strengthU .

The functionC(U |q, iνm) does not obey an equation of motion. It is connected with
a general two-particle Green functionK↑↓(U |k′, k′′; q) determined from a set of coupled
Bethe–Salpeter equations. To simplify lengthy expressions, we use the four-vector notation
k = (k, iωn) and q = (q, iνm) for the fermionic and bosonic variables, respectively. We
can write

C(U |q, iνm) = − 1

β2N 2

∑
k′,k′′

G↑(k′)G↑(k′ + q)G↓(k′′)G↓(k′′ + q)K↑↓(U |k′, k′′; q). (7)

The functionsKσσ ′(k′, k′′; q) can be represented as sums of contributions from different
two-particle channels:

Kσσ ′(k, k′; q) = Iσσ ′(k, k′; q)+KUσσ ′(k, k′; q)+Kehσσ ′(k, k′; q)+Keeσσ ′(k, k′; q) (8)
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where Iσσ ′ contains diagramsirreducible in all of the channels whileKασσ ′ is a sum of
diagramsreduciblein the particular channelα. Each of the reducible two-particle functions
obeys a Bethe–Salpeter equation mixing different channels and eventually spins. The
equations in the ‘horizontal’ electron–hole and electron–electron channels read

Kehσσ ′(k, k′; q) = −
1

βN
∑
q ′
3eh
σσ ′(k, k

′; q ′)Gσ (k + q ′)Gσ ′(k
′ + q ′)

× Kσσ ′(k + q ′, k′ + q ′; q − q ′) (9a)

Keeσσ ′(k, k′; q) = −
1

βN
∑
k′′
3ee
σσ ′(k, k + k′ + q − k′′; k′′ − k)Gσ (k

′′)Gσ ′(k + k′ + q − k′′)

× Kσσ ′(k′′, k′; k + q − k′′). (9b)

The reducible functions in the ‘vertical’ or the interaction channel are determined from the
equations

KUσσ ′(k, k′; q) = −
1

βN
∑
k′′σ ′′

3U
σσ ′′(k, k

′′; q)Gσ ′′(k
′′)Gσ ′′(k

′′ + q)Kσ ′′σ ′(k′′, k′; q). (9c)

Here3α
σσ ′(k, k

′; q) are sums of irreducible diagrams in theαth channel. Equations (9) have
the structure of parquet diagrams [19, 20]. To complete the parquet algebra and to close the
equations we must add a definition for the irreducible functions from each channel. When
no further approximations are used, the parquet equations are completed with a relation
between the reducible,Kα, and irreducible,3α, functions:

3α
σσ ′(k

′, k′′; q ′) = Kσσ ′(k′, k′′; q)−Kασσ ′(k′, k′′; q). (10)

The generating functional8[U,G] is now fully determined from the completely irreducible
two-particle vertex functionsIσσ ′(Uλ|k′, k′′; q), Bethe–Salpeter equations (8)–(10) and
linked-cluster theorem (6), with (7). The self-energy is determined from the saddle point
of the generating functional� with respect to the fermion propagatorG. Note that the
self-energy here measures only dynamical fluctuations beyond the Hartree approximation.

Although the approximation scheme (6)–(10) is complete we do not have the gener-
ating functional in closed form. Any advanced approximation with two- and one-particle
renormalizations is of practical use only if we succeed in integrating the linked-cluster
theorem explicitly to attain a theory entirely determined by a single interaction strength.
Only then can we use the two-particle functions to study the stability and critical behaviour
of solutions at intermediate and strong coupling.

3. Simple approximations

As examples of the systematics in the general construction of a perturbation expansion
with renormalizations in two-particle Green functions, we sum two-particle scatterings from
just a single channel where we can explicitly integrate over the interaction strength in the
linked-cluster theorem (6). In all of these approximations the completely irreducible vertex
remains unrenormalized,I↑↓ = U , Iσσ = 0.

3.1. Ring diagrams

We neglect contributions to the two-particle scattering matrixK↑↓ coming from the electron–
electron and electron–hole channels and consider explicitly only the interaction channel.
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This means that no multiple scatterings are allowed. Moreover, we neglect the irreducible
functions for scatterings of quasiparticles with the same spin. We choose

3eh
σσ ′ = 3ee

σσ ′ = 0 3α
σσ = 0 (11)

whereα = U, ee, eh. The two-particle functionK↑↓ in this approximation then reads

KRing↑↓ (U |k′, k′′; q) = U

1− U2X↑(q, iνm)X↓(q, iνm)
. (12)

The integral over the interaction strength can be performed simply, leading to a generating
functional

8Ring[U,G] = 1

2βN
∑
qm

eiνm0+ ln[1− U2X↑(q, iνm)X↓(q, iνm)] (13a)

where

Xσ (q, iνm) = 1

βN
∑
kn

Gσ (k, iωn)Gσ (k + q, i(ωn + νm)) (13b)

is a bubble of two renormalized one-electron propagators. The self-energy is determined
by an integral equation derived from a functional variation of the generating functional
8Ring[U,G] w.r.t. the one-electron propagatorG. The functional8Ring generates a shielded
interaction approximation introduced by Baym and Kadanoff [16] and recently investigated
in infinite dimensions in [21, 18].

3.2. Ladder diagrams

Other single-channel approximations to the two-particle scattering matrixK↑↓ consist of
ladders of either multiple singlet electron–hole or electron–electron scatterings. In these
ladder approximations we neglect screening of the interaction due to polarization bubbles
of electron–hole pairs. The approximations can be formulated mathematically as

3α
σσ = 3U

↑↓ = 0 3ee
↑↓ = 0

∨
3eh
↑↓ = 0 (14)

where the former alternative holds for the electron–hole ladder while the latter holds for the
electron–electron one. Summing the geometric series of the only non-trivial Bethe–Salpeter
equations, we obtain for the electron–hole channel

KRPA↑↓ (U |k, k′; q) = U
/(

1+ U

βN
∑
k′′
G↑(k − k′ + k′′)G↓(k′′)

)
(15a)

and for the electron–electron channel

KTMA↑↓ (U |k, k′; q) = U
/(

1+ U

βN
∑
k′′
G↑(k + k′ − k′′)G↓(k′′)

)
. (15b)

We can again perform the integration in the linked-cluster theorem (6), and we end up with

8RPA[U,G] = − 1

2βN
∑
qm

eiνm0+{UX(q, iνm)− ln[1+ UX(q, iνm)]} (16a)

for the electron–hole channel and analogously with

8TMA[U,G] = − 1

2βN
∑
qm

eiνm0+{UY(q, iνm)− ln[1+ UY(q, iνm)]} (16b)
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for the electron–electron channel. Here we used the notation

X(q, iνm) = 1

βN
∑
kn

G↑(q + k, iωm+n)G↓(k, iωn) (16c)

Y (q, iνm) = 1

βN
∑
kn

G↑(q − k, iωm−n)G↓(k, iωn). (16d)

Note that8RPA generates random-phase approximation with renormalized propagators,
i.e. its renormalized version as introduced by Suhl in the study of the single-impurity
Anderson model [22]. The generating functional8TMA with multiple electron–electron
scatterings describes a renormalizedT -matrix approximation studied by Baym and
Kadanoff [16].

3.3. The FLEX approximation

One possibility for going beyond the one-channel approximations is to add contributions
from separate, topologically inequivalent channels. This is a first (non-self-consistent) step
in iterations towards a solution of the general parquet diagrams. The resulting, so-called
fluctuation-exchange (FLEX) approximation [23], can be characterized by the choice of the
irreducible functions

3U
↑↓ = 3eh

↑↓ = 3ee
↑↓ = U 3α

σσ = 0. (17)

The full two-particle scattering function can be represented as a sum of one-channel
functions:

KFLEX↑↓ = KRing↑↓ +KRPA↑↓ +KTMA↑↓ − 2K(2)↑↓ (18)

whereK(2)↑↓ is the two-particle function in second-order perturbation theory. The generating
functional8FLEX, being also a sum of functionals of the one-channel approximations

8FLEX[U,G] = 8Ring[U,G] +8RPA[U,G] +8TMA[U,G] − 28(2)[U,G] (19)

generates the corresponding self-energy of the FLEX approximation.
All of the above-derived approximations are self-consistent at the level of one-particle

functions. A series of multiple two-particle scatterings contribute to the self-energy, but the
interaction strength in the scattering processes remains unrenormalized. With increasing
Coulomb repulsion the two-particle scattering functions of the ring approximation and
the RPA show a pole close to half-filling and very low temperatures. The intermediate
coupling of the Hubbard model then lies in the critical region ofKRing↑↓ andKRPA↑↓ . The
irreducible function from the interaction channel becomes singular due to the singularity
of the two-particle scattering function from the electron–hole (horizontal) channel and vice
versa. Hence the bare interaction in multiple scatterings of each channel must be replaced
by a renormalized function from the other channel. Neither the ring approximation nor the
RPA (FLEX) can lead to a reliable description of intermediate and strong coupling.

4. The necessity for the full renormalization of the interaction strength at
two-particle criticality

The early studies using parquet diagrams in the local-moment problem in metals [19]
stressed the necessity of going beyond the renormalized RPA of Suhl and including vertex
renormalizations in the two-particle scatterings. The simple ring and ladder approximations
renormalize only the self-energy and use the unrenormalized interaction strengthU in the
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two-particle scattering processes. It is clear that at intermediate and strong coupling, the
actual interaction that the quasiparticles ‘feel’ in their mutual scattering events must be
renormalized by the presence of other quasiparticle pairs. In fact, we have to replace the
bare interactionU by a renormalized two-particle functionK↑↓ from (2) projected to the
respective channel. We will do this systematically in the next section.

However, there is a more basic reason for introducing a vertex renormalization whenever
we use a mass renormalization. There is a relation between a two-particle function and a
derivative of the one-particle propagator having the structure of a Ward identity. Baym
and Kadanoff formulated necessary conditions for a many-body theory to fulfil mass
conservation. A generalized Ward identity connecting an irreducible vertex function with a
variation of the self-energy with respect to an external potential was thereby derived [17].
An interacting electron system contains not only mass but also charge. The electron–
electron interaction carries an electrostatic energyU = e2/a∗. In closed systems the
electrostatic potential is generated entirely by the actual charge distribution. The charge
is carried exclusively by the particles involved. Hence a redistribution of mass density
must be accompanied by a corresponding charge redistribution in order not to generate
spurious sources of the electrostatic potential. This ‘charge conservation’, i.e. the entire
electrostatic potential, is generated from the charge distribution only, and can be expressed
for the Hubbard interaction as a ‘Ward identity’:

∂�(U,µiσ )

∂U
=
∑
i

[
δ2�

δµi↑ δµi↓
+ δ�

δµi↑

δ�

δµi↓

]
=
∑
i

{
T

4
[κii − χii] + ni↑ni↓

}
(20a)

with the grand potential� defined in (4) andκii, χii as the static, local compressibility
and susceptibility, respectively. We can generalize this static identity using small space and
time inhomogeneous perturbationsU → U +δUij(τ, τ ′) andµσ → µσ +δµiσ (τ ) to obtain

δ8[U,G]

δUij(τ, τ ′)

∣∣∣∣
δU=0,δµ=0

= −δGii↑(τ, τ
+)

δµj↓(τ ′)

∣∣∣∣
δU=0,δµ=0

. (20b)

Both of these identities are fulfilled for an exact solution. The left-hand side of (20b)
is the fundamental two-particle function for which the explicit linked-cluster expansion is
used. The right-hand side of (20b) makes a connection to the dynamical susceptibility and
compressibility obtained as variations of the one-particle Green function. The left-hand side
of (20b) is a variation of the charge distribution and the right-hand side the corresponding
variation of mass. If (20b) is violated we cannot refer to inequality (3). Identity (20b) is
important for the linked-cluster expansion where it is used as a fundamental tool for the
construction of the generating functional, i.e. for explicit integration in the linked-cluster
theorem (6) [24]. However, even for classical spin systems, where the situation is much
easier, it was impossible to integrate (20b) in full and to resolve the generating functional
8 completely [25].

Most of the existing self-consistent approximations renormalize only mass, i.e. use
renormalized one-electron propagators neglecting vertex renormalization. The Ward
identity (4) is always violated in self-consistent theories that do not renormalize the
interaction strength. For example, for the Hartree approximation we obtain after a Fourier
transformation

δGHartree
↑
δµ↓

(q, iνm)

∣∣∣∣
δU=0,δµ=0

= UX↑(q, iνm)X↓(q, iνm)
[
1− U2X↑(q, iνm)X↓(q, iνm)

]−1

(21)
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with the Hartree one-electron propagators. Since8Hartree ≡ 0, identity (20b) is violated
by terms proportional toU , the small expansion parameter of the Hartree approximation.
Violation of ‘charge conservation’ in the Hartree approximation has no qualitative impact
on the physics of the solution unless there is a phase transition making the right-hand side of
(21) diverge. We hence cannot rely upon the Hartree approximation at critical points. The
Hartree phase diagram must be confirmed by a more advanced approximation complying
better with charge conservation—at least in such a manner that both sides of (20b) lead to
qualitatively the same phase diagram.

Figure 2. The new vertex functions generated from functional derivatives of the self-energy
from the ring diagrams. The double wavy line is the interaction between spin-up and spin-down
particles, and the double dashed line the interaction between the particles with the same spin
renormalized by ring diagrams. These vertex functions are not contained in the left-hand side
of identity (20b) of the ring diagrams.

To improve upon the Hartree approximation towards charge conservation we can use
the right-hand side of (21) for determination of the generating functional8[U,G] from
the linked-cluster theorem. We end up with a generating functional of the ring diagrams
investigated in section 3.1. Since this approximation does not contain dynamical vertex
renormalizations either, we cannot expect the Ward identity (20) to be fulfilled [26]. The
left-hand side of (20b) for the ring diagrams is identical to the right-hand side of (21)
where the Hartree propagators are replaced by those from the ring diagrams. The new
right-hand side of (20b) for the ring diagrams must be determined from a set of integral
equations and becomes a functional of irreducible vertex functionsδ6σ/δGσ ′ . It contains
first ladder terms with interaction lines renormalized due to the electron–hole polarization
bubbles plotted in figure 2. We see that to comply with charge conservation, at least all
ladder and ring diagrams must be taken into account. We can conclude from these few steps
that only the parquet diagrams can be expected to obey the Ward identity due to charge
conservation.
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However, the full parquet algebra is very complicated and does not allow for a general
self-consistent (non-perturbative) solution. If all simpler approximations break the identity
(20), we may ask how much the violation of charge conservation matters. It is physically
unacceptableif the functions from the right- and left-hand sides of equation (20) generate
qualitativelydifferent phase diagrams and lead to incompatible spectral properties. We can
trust an approximation violating (20) only if both sides of (20) are qualitatively equivalent.

5. Beyond simple ring and ladder series: dipole approximation

It follows from the preceding analysis that the full parquet approximation would be an
ideal candidate for a theory adequately describing two-particle criticality at intermediate
coupling. It renormalizes the interaction strength to comply with charge conservation,
at least qualitatively. We learned, however, that only non-perturbative solutions, treating
singularities of two-particle functions at intermediate coupling analytically, can lead to
numerically stable solutions. Parquet diagrams were suggested in the local-moment problem
as improvements of Suhl’s random-phase approximation. Since no exact solutions to the
parquet equations exist, approximations had to be used. The local (static)ansatzchosen
in [19] failed to reproduce the Kondo scale at strong coupling and to capture the actual
strong-coupling behaviour of the parquet diagrams. Neither did non-self-consistent analysis
of the divergent diagrams at strong coupling [27] help in the selection of the relevant classes
of diagrams.

To achieve a feasible approximation adequate for the description of intermediate
coupling and the metal–insulator transition, we have to start with a reduced parquet algebra
that, unlike the simple series, treats the two-particle functions from the horizontal and
vertical channels equivalently, at least as regards singularities. Since the electron–hole and
interaction channels contribute the same divergence (up to a numerical factor) at the critical
point of the spin-symmetric case, we must keep contributions to the parquet diagrams from
these two channels unabridged. Also, in a spin-polarized situation (in an external magnetic
field) close to half-filling, the electron–hole ladders and rings remain dominant.

In the critical region of the metal–insulator transition we expect electrons and holes to
form pairs of almost bound states. This means that if an electron and a hole get close to each
other they tend to stay together for macroscopically long times. The probability of mutual
scatterings of electrons and holes is hence much higher than that of other scattering events.
The intra-pair scatterings of the electron and hole from the binding pairs are pronounced
and are mediated by a renormalized interaction due to the presence of other almost bound
electron–hole pairs. The pairs have the total charge zero and carry only a dipole electrical
moment. Theinter-pair interaction is of dipole character and hence weak. There is no
significant renormalization of the electrostatic potential due to the scarcity of interaction
processes between pairs or pairs and unbound particles. The dipole approximation hence
systematically neglects all multiple scatterings where more than two particles take part.

This intuitive physical picture can be formulated mathematically in terms of specific
approximations in the general parquet algebra (9). We neglect the three-particle and higher-
order irreducible diagrams as irrelevant at the metal–insulator transition. Next, we ignore the
triplet irreducible functions. This restriction does not mean that the triplet pairing is absent.
It is actually present, but the triplet electron–hole pairs participateonly in the screening of
the interaction strength in the multiple scatterings of the singlet electron–hole pairs. With
these restrictions we can set in the asymptotic limit of the transition:

Iσσ (k, k
′; q) = U Iσσ (k, k

′; q) = 0 3α
σσ (k, k

′; q) = 0 (22a)
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whereα = U, ee, eh. Strictly speaking, thisansatzis not fully mathematically consistent.
Because of the mixing of spins, the singularity from the singlet channel also infiltrates the
irreducible functions3α

σσ . These induced singularities are less important than the primary
source of divergencies, the singlet irreducible functions3α

↑↓.
We now define the singlet two-particle function from the vertical channel as

0↑↓(k, k′; q) = U +KU↑↓(k, k′; q).
It is a functional of the two-particle scattering function from the horizontal channel defined
as

3U
↑↓(k, k

′; q) = Kh↑↓(k, k′; q) = U +Keh↑↓(k, k′; q)+Kee↑↓(k, k′; q). (22b)

After a few manipulations we obtain

0↑↓(k, k′; q) = U + 1

β2N 2

∑
k↑,k↓

Kh↑↓(k, k↓; q)G↓(k↓)G↓(k↓ + q)Kh↓↑(k↑ + q, k↓ + q;−q)

× G↑(k↑)G↑(k↑ + q)
[
Kh↑↓(k↑, k′; q)− U + 0↑↓(k↑, k′; q)

]
. (22c)

The function0↑↓(k, k′; q) shows divergence forq = q0 and ν → 0 in the critical region
of condensation of electron–hole (triplet) pairs as in the ring approximation. However, the
character of the pole is significantly influenced by the non-trivial dependence of the function
0↑↓ on the momenta of the participating fermions. The renormalized interaction0↑↓ from
(22c) represents a sum of diagrams each with a single outer interaction line from each side.
That is, multiple connections between pairs that are almost bound are disregarded. Typical
diagrams included and omitted in the renormalized interaction are plotted in figure 3.

To complete the approximation, we must specify the two-particle function from the
horizontal channel. It is determined from equations (9a) and (9b) with appropriate
irreducible functions. Since multiple electron–electron scatterings are not supposed to
contribute divergent terms in the critical region of the metal–insulator transition, we can
neglect these scatterings completely without affecting the leading-order asymptotics. We
put

3ee
↑↓(k, k

′; q) = 0. (23a)

With this simplification we gain an explicit integral equation for the two-particle scattering
function from the horizontal channel. We have

Kh↑↓(k, k′; q) = U −
1

βN
∑
q ′
0↑↓(k, k′; q ′)G↑(k + q ′)G↓(k′ + q ′)

× [
0↑↓(k + q ′, k′ + q ′; q − q ′)− U +Kh↑↓(k + q ′, k′ + q ′; q − q ′)

]
.

(23b)

The functionKh↑↓ shows a pole at the transition with condensation of electron–hole (singlet)
pairs—but here fork′ − k = q0 andω′ − ω → 0, as in the simple ladder approximation
(RPA). However, the critical behaviour at the pole becomes more complex due to a richer
structure ofKh↑↓(k, k′; q).

The two-particle part of the dipole approximation is now complete, i.e. (22) and (23)
fully characterize the necessary two-particle functions. However, as already mentioned in
section 2, an approximation for two-particle functions is practicable only if it allows for
explicit integration over the interaction strength in the linked-cluster theorem needed for
the construction of the generating functional8[U,G]. Using the renormalized two-particle
functions0↑↓ andKh↑↓ we can construct a generating functional of the dipole approximation
in closed form. First we use relation (7) where we rewrite the full two-particle scattering
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Figure 3. Typical diagrams contributing to0↑↓, (a), (b), where no more than two particles take
part in multiple scatterings from the irreducible function3U . Diagram (c) does not contribute
to 0↑↓, since more than two external interaction lines are attached.

function with the aid of solutions from the horizontal and vertical channels. The function
C in our simplified parquet algebra explicitly reads

C(q) = − 1

β2N 2

∑
k′,k′′

G↑(k′)G↑(k′ + q)G↓(k′′)G↓(k′′ + q)

× [
Kh↑↓(k′, k′′; q)+ 0↑↓(k′, k′′; q)− U

]
. (24)

Next we introduce the following notation and operations:

[X↑↓G↑G↓](k, k′; q) ≡ X↑↓(k, k′; q)G↑(k + q)G↓(k′ + q) (25a)

[X ? Y ](k, k′; q) ≡ 1

βN
∑
q ′
X(k, k′; q ′)Y (k + q ′, k′ + q ′; q − q ′) (25b)

[X↑↓G↓G↓ •X↓↑G↑G↑](k, k′; q) ≡ 1

βN
∑
k′′
X↑↓(k, k′′; q)G↓(k′′)G↓(k′′ + q)

× X↓↑(k′ + q, k′′ + q;−q)G↑(k′)G↑(k′ + q) (25c)

[X ◦ Y ](k, k′; q) ≡ 1

βN
∑
k′′
X(k, k′′; q)Y (k′′, k′; q). (25d)

Using these definitions we integrate the linked-cluster theorem to a generating functional
8[U ;0↑↓,Kh↑↓;G] in the following form:

8[U ;0↑↓,Kh↑↓;G] = 1

2β3N 2

∑
k,k′,q

[(0↑↓ +Kh↑↓ − U)G↑G↓](k, k′; q)

× [(0↑↓ +Kh↑↓ − U)G↑G↓](k + q, k′ + q;−q)

− 1

2β2N
∑
k,k′

{
[0↑↓G↑G↓](k, k′; 0)− ln[1+ [0↑↓G↑G↓]?](k, k′; 0)

}
+ 1

2β2N
∑
k,q

ln
[
1− [Kh↑↓G↓G↓ •Kh↓↑G↑G↑]◦

]
(k, k + q;−q). (26)

The first expression on the right-hand side of (26) is a correction due to multiple summation
of second-order contributions from the last two terms standing for the ladder, electron–
hole scatterings (the second term) and for the rings of electron–hole bubbles (the third
term). Unlike the simple series, the bare interaction in the scattering processes is replaced
by a fully renormalized two-particle function from the complementary channel. The
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generating functional8[U ;0↑↓,Kh↑↓;G] contains only fully renormalized one- and two-
particle functions. The bare interaction stands for higher-order irreducible functions that
remain unrenormalized (neglected) in this approximation.

It is easy to verify that generating functional (26) leads to the reduced parquet equations
of the dipole approximation (22c) and (23b) if we make variations of8[U ;0↑↓,Kh↑↓;G]
w.r.t. Kh↑↓ and0↑↓, respectively. We can also check by inspection that (5) is fulfilled by
functional (26) together with (24).

Variation of the generating functional w.r.t. the one-electron propagator leads to a generic
equation for the self-energy if the equations for0↑↓ andKh↑↓ are used:

6↑(k) = − U

β2N 2

∑
k′,q

G↑(k + q)G↓(k′)G↓(k′ + q)
[
0↑↓(k, k′; q)+Kh↑↓(k, k′; q)− U

]
.

(27)

Equations (22)–(27) fully determine thermodynamic as well as spectral properties of the
dipole approximation for arbitrary interaction. They represent an asymptotic solution of the
parquet diagrams in the critical region of a transition point,U ↗ Uc, where electron–hole
singlet and triplet bound pairs condense.

6. Application: the Hubbard model in an external magnetic field

In the spin-symmetric case there is no difference between singlet and triplet pairs and the
two-particle functions0↑↓ and Kh↑↓ develop the same singularity at the metal–insulator
transition. This fact makes it very difficult to apply the dipole approximation directly to
the intermediate coupling in the paramagnetic phase. We can, however, apply the dipole
approximation more easily to the Hubbard model in an external magnetic field. The parquet
approximation becomes asymptotically exact when the fully polarized ferromagnetic state
in an external magnetic field is approached. If we resort to half-filling, the leading deviation
from the saturated ferromagnet is determined by the dipole approximation. For the sake of
simplicity we will explicitly analyse only the one-dimensional case.

An external magnetic field breaks the equivalence between loops of electrons and holes
with parallel and antiparallel spins. The degeneracy in the critical region of the metal–
insulator transition is thereby lifted. The functions0↑↓ andKh↑↓ are no longer equivalent
and can be treated separately. However, both of them are relevant at intermediate and strong
coupling where perturbation theory becomes singular.

We denote the external magnetic field asB. The one-electron propagators can be
represented as

G↑(k, z) =
[
z+ B + U

2
− ε(k)

]−1

G↓(k, z) =
[
z− B − U

2
− ε(k)

]−1

. (28)

The electron–hole bubbles in the spin-polarized case have the following representation:

XB↑↓(q, ζ ) = XB↓↑(−q,−ζ ) =
1

N
∑
k

f (ε(k)− B − U/2)− f (ε(k + q)+ B + U/2)
ζ − 2B − U + ε(k)− ε(k + q)

(29a)

XB
↑↑(q, ζ ) =

1

N
∑
k

f (ε(k)− B − U/2)− f (ε(k + q)− B − U/2)
ζ + ε(k)− ε(k + q) (29b)

XB↓↓(q, ζ ) =
1

N
∑
k

f (ε(k)+ B + U/2)− f (ε(k + q)+ B + U/2)
ζ + ε(k)− ε(k + q) . (29c)
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At zero temperature and for a sufficiently strong magnetic field, the triplet bubblesXBσσ
vanish and the solution to the dipole (parquet) approximation reduces to

00 = U Kh0(q, ζ ) =
U

1+ UXB↑↓(q, ζ )
. (30)

The critical field for which all the spins will be aligned along the external magnetic field is
defined at weak coupling (U < Uc) as

Bc + U
2
= w (31a)

wherew is the half-bandwidth. At strong coupling the critical field must be determined
from [12–15]

1+ UXBc↑↓(Q, 0) = 0 (31b)

whereQ = (π, π, . . . , π) is the vector from the Brillouin zone at which the singlet
bubbleX↑↓ reaches its maximum. It is easy to verify that (30) is a solution to the dipole
approximation forB > Bc. This is a consequence of the fact thatX↑↓ has a cut only along
the positive real axis, which causes vanishing of the corrections to the bare interaction in
the vertical channel.

We now turn to the spatial dimensiond = 1. The critical interaction separating the weak-
and strong-coupling regimesUc = 0. The condition (31b) for the instability of the saturated
ferromagnet is simultaneously a condition on a singularity in the two-particle functionKh↑↓.
This means that perturbation expansion in1B = Bc − B below the critical magnetic field
involves a singular function. Weak-coupling perturbation theory and the Landau mean-field
theory of phase transitions break down and one has to introduce renormalizations into the
two-particle functions.

If we decrease the magnetic field below its critical value, the functionKh0(Q, ζ ) gets
a narrow cut on the negative real axis. Without renormalization in the function0↑↓, the
staggered susceptibility becomes negative and the spins must antiferromagnetically order.
However, below the critical magnetic field the two-particle function0↑↓ is no longer
unrenormalized. The leading contribution to this function in1B and in the first iteration
of the full self-consistency reads

δ0↑↓(k, iω, k′, iω′; q, iν) =
∫ π

−π

dq ′

2π

dq ′′

2π

∫ ∞
−∞

dν ′

2π

dν ′′

2π
Kh0(q ′, iν ′)

× G↓(k + q ′, iω + iν ′)G↓(k′ + q ′, iω′ + iν ′)Kh0(q ′ − q ′′, iν ′ − iν ′′)
× G↑(k + q ′′, iω + iν ′′)G↑(k′ + q ′′, iω′ + iν ′′)Kh0(q − q ′′, iν − iν ′′). (32)

For the evaluation of the above expression we need a low-energy expansion for the singular
functionKh0. We obtain for small frequencies and momenta

Kh0(q, ζ ) = −
1

X′
1

21B + ζ −X′′/X′q2
(33)

where the expansion parameters introduced read

X′ =
∫ w

−w
dε

ρ(ε)

(2B + U − 2ε)2

X′′ =
∫ w

−w
dε

ρ(ε)

(2B + U − 2ε)2

[
ε − w2− ε2

2B + U − 2ε

]
.

(34)
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In leading order of1B the cut on the negative real axis contributes only once and its
contribution can be evaluated using representation (33). The correction to the two-particle
function from the vertical channel is then

δ0↑↓(k, iω, k′, iω′; q, iν) = − 1

π

√
1B

X′X′′
G↓(k, iω)G↓(k′, iω′)

×
∫ π

−π

dq ′

2π

∫ ∞
−∞

dν ′

2π
Kh0(−q ′,−iν ′)

× G↑(k + q ′, iω + iν ′)G↑(k′ + q ′, iω′ + iν ′)Kh0(q − q ′, iν − iν ′). (35)

Having the asymptotic behaviour of the function0↑↓, we can evaluate the asymptotics of the
functionKh↑↓. It, however, cannot be treated perturbatively, since the unperturbed function
Kh0 is singular. The asymptotic solution in the limit1B → 0 can be represented with the
aid of a linear integral equation:

Kh↑↓(k, iω, k′, iω′; q, iν) = U
[
1− δϕ(k, iω, k′, iω′; q, iν)

]
−
∫ π

−π

dq ′

2π

∫ ∞
−∞

dν ′

2π

[
U + δ0↑↓(k, iω, k′, iω′; q ′, iν ′)

]
× G↑(k + q ′, iω + iν ′)G↓(k′ + q ′, iω′ + iν ′)
× Kh↑↓(k + q ′, iω + iν ′, k′ + q ′, iω′ + ν ′; q − q ′, iν − iν ′) (36)

that becomes singular at the critical magnetic fieldB = Bc. We used the notation

δϕ(k, iω, k′, iω′; q, iν) =
∫ π

−π

dq ′

2π

∫ ∞
−∞

dν ′

2π
G↑(k + q ′, iω + iν ′)G↓(k′ + q ′, iω′ + iν ′)

× δ0↑↓(k + q ′, iω + iν ′, k′ + q ′, iω′ + iν ′; q − q ′, iν − iν ′).

Equation (36) can be solved in leading order of1B with

Kh↑↓(k, iω, k′, iω′; q, iν) = U
[
1− δϕ(k, iω, k′, iω′; q, iν)

]
1+ UX↑↓(k − k′, iω − iω′)+ δψ(k, iω, k′, iω′)

(37)

where

δψ(k, iω, k′, iω′) =
∫ π

−π

dq ′

2π

∫ ∞
−∞

dν ′

2π
δ0↑↓(k, iω, k′, iω′; q ′, iν ′)

× G↑(k + q ′, iω + iν ′)G↓(k′ + q ′, iω′ + iν ′).

The two-particle functionsKh↑↓ andδ0↑↓ can be used in (27) to determine the self-energy

and the deviation of the magnetization1m = 1−m. They are both proportional to
√
1B

in accord with the Betheansatzsolution [28].
There are two contributions in the denominator of the solution in (37). One, proportional

to U , depends on1B linearly and is negative. The other one, proportional toδ0↑↓,
increases below the critical magnetic field as

√
1B and ispositive. Hence the total change

is dominated by the renormalization of the interaction strength in the vertical channelδ0↑↓
stabilizing the disordered state. Only if the total change ofKh↑↓ were positive would the
long-range antiferromagnetic order set in. The mean-field term withU has at strong coupling
the same structure in all dimensions, while the correctionδ0↑↓ grows at strong coupling
and higher dimensions as1Bd/2. We can hence conclude that the mean-field analysis
of reference [12] qualitatively holds in three and higher spatial dimensions in the strong-
coupling regime,U > Uc. The renormalizationδ0↑↓ plays an important role in high spatial
dimensions forU 6 Uc, i.e. at the metal–insulator transition and at weak coupling with
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B + U/2 < w, where the asymptotics significantly differs from the strong-coupling one.
The metal–insulator transition and the weak-coupling asymptotics ind = 3 dimensions will
be investigated in a separate publication.

The Hubbard model in two dimensions deserves special attention. The vertex correction
δ0↑↓ in d = 2 dimensions is of the same order as the mean-fieldU -term in integral equation
(36). Whether a long-range antiferromagnetic order can set in when there is an external
magnetic field may depend on the lattice structure and on the interaction strength. However,
to reach an accurate answer we have to include also next-to-leading-order terms neglected
in the dipole approximation but included in the complete parquet algebra.

7. Conclusions

We analysed in this paper correlated electron systems at intermediate coupling. We showed
that in models with on-site Coulomb repulsion a pole in a characteristic two-particle
function is approached with increasing interaction strength. The characteristic function is an
extension of the two-particle part of the underlying Hamiltonian and governs the stability of
the solution at intermediate and strong coupling. To handle situations with singularities in
two-particle Green functions, we developed a systematic general scheme of approximations
for the generating thermodynamic potential by summing diagrams classified at the level of
two-particle functions. We used the linked-cluster theorem for the parquet-type diagrams
to derive the appropriate generating functional and the one-particle self-energy. From this
very general scheme, already known approximations involving two-particle functions can
be derived. The construction, however, enables one to go systematically beyond simple
theories and to include more complex diagrams also with higher-order vertex functions,
when necessary.

The intermediate coupling falls into the critical region of a two-particle pole caused by
condensation of electron–hole (bound) pairs. We stressed that any reliable approximation
in a two-particle critical region must contain vertex corrections qualitatively equivalent to
those embodied in the parquet algebra. This conclusion is dictated by a Ward-like identity
(20a) reflecting conservation of charge, i.e. any variation of the electrostatic energy can be
caused only by a variation in the charge distribution.

In an effort to comply with the demand of full renormalization of two-particle functions
near critical points we proposed a simplified parquet algebra, called dipole approximation.
This theory, mathematically expressed byansatze(22a) and (23a), sums self-consistently
contributions to the parquet diagrams from two topologically inequivalent channels. It
neglects non-singular contributions and keeps only leading-order potentially divergent
diagrams from multiple scatterings of electrons and holes. This approximation, having
already two-particle functions with the full momentum dependence as in the parquet algebra,
possesses a generating functional in closed form and represents a thermodynamically
consistent, conserving approximation. The dipole approximation is an asymptotic solution of
the parquet diagrams in the critical region of the metal–insulator transition with condensation
of electron–hole singlet and triplet pairs.

We applied the dipole approximation to the Hubbard model in an external magnetic field.
We showed that it becomes asymptotically exact at half-filling when the fully polarized
ferromagnet is approached. Perturbation theory below the critical magnetic field, at which
the saturated ferromagnet becomes unstable, is singular at strong coupling, and only a
theory with renormalized two-particle functions can deliver a reliable description. Vertex
renormalizations of the dipole approximation destroy the mean-field antiferromagnetic order
in d = 1 dimensions and produce the asymptotics known from the Betheansatzsolution.
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The ultimate aim of the proposed scheme is to describe the Mott–Hubbard metal-
insulator transition at zero magnetic field. The two two-particle functions from the dipole
approximation show singularity of the same order at this transition. Unlike the case for a
non-zero magnetic field, no apparent perturbative or iterative scheme for solving the non-
linear integral equations (22c) and (23b) seems imminent. The only feasible way to reach
a solution seems to be to factorize the leading divergent contribution via a low-frequency
ansatzthat would turn integral Bethe–Salpeter equations algebraic. However, a proper low-
frequencyansatzleading to a consistent solution of the dipole or the parquet approximation
appears rather complex. Work on the character of the two-particle singularity in the dipole
approximation for the mean-field Hubbard and single-impurity Anderson model, from which
the low-frequencyansatzmust be deduced, is in progress.
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